Smart Contract
Security Audit
Vi

Access Control Smart Contract Audit

Jun 23, 2025

https://saferico.com/

business@saferico.com
https://t.me/SFI_ANN

https://saferico.com/
mailto:business@saferico.com
https://t.me/SFI_admin

Table of Contents

Table of Contents
Background

Project Information
Smart Contract Information

Executive Summary

File and Function Level Report
File in Scope:

Issues Checking Status
SWC Attack Analysis
Severity Definitions
Audit Findings

Automatic testing
Testing proves
Inheritance graph
Call graph

Source lines

Risk level

Source units in scope

Capabilities

Unified Modeling Language (UML)

Functions signature
Automatic general report

Conclusion

Disclaimer

Background

The purpose of the audit was to achieve the following:

e Ensure that the smart contract functions as intended.
e Identify potential security issues with the smart contract.

The information in this report should be used to understand the risk exposure of the smart
contract, and as a guide to improve the security posture of the smart contract by remediating
the issues that were identified.

Project Information

e Platform: Binance Smart Chain
e Name: AccessControl
e Language : Solidity

e Contract Address: 0x889713278cd537a0ad4de236b26ec0f4afab82842,
0x3a0a36a5df68047alea2510104914c3e5ab0358a

e Code Source: https://github.com/TerraDharitri/drt-pREW A/tree/main/contracts

https://github.com/TerraDharitri/drt-pREWA/tree/main/contracts

AccessControl.sol

Role-Based Access Control
A Solidity smart contract for managing (
€

4

permissions in decentralized applications |

N P

Solidity v0.8:28 | MIT License SaferiCO
Source: TerraDharitri/drt-pREWA on GltHub

L

What It Does DO IS C)

e Enables role-based access control — ~ =
(RBAC) for smart contracts User Gujest
|
e Assigns roles to accounts to I

control who can perform g

specific actions PA DEFAULT ROLE
ADMIN_ROLE

e Fiexible and secure, ideal for DAOs,
DeFi, and governance systems.

Core Features

> A Y []

Roles Dynamic Admin Events Security

Definedby ~ Management Hierarchy Track role cha-- Restricted access
bytes82(n.og Grant revoke Eachrole has ~ Nges With Role- via ontyRole

DEFAULT. or renounce an admin toleto Acminchanged,

ADMIN_ROLE. roles at runtme manage it RoleGranted,
9 RoleRevoked

Main Functions How It's Used

7 hasRole(bytes32 role, accuont) e Decentralized governance
L J Returns: bool (e.g, DAOs)

r 7 grantRole(bytes32 role, address e DeFi protocols needing

\ J account restricted functions

[7 revokeRole(bytes32 role, address e Any dApp requiring granular
L J account permissions

r 7 renounceRole (bytes32 role,
U J account

Executive Summary

According to our assessment, the customer's solidity smart contract is Well-Secured.

Poor Secured

Automated checks are with remix IDE. All issues were performed by the team, which included the
analysis of code functionality, manual audit found during automated analysis were manually
reviewed and applicable vulnerabilities are presented in the audit overview section. The general
overview is presented in the Project Information section and all issues found are located in the
audit overview section.

Team found O critical, 0 high, 0 medium, 1 low, 0 very low-level issues and 1 note in all solidity files of the
contract

The files:

AccessControl.sol

Audit Score:

100% secure

File and Function Level Report

File in Scope:

Contract Address

Contract Name

1fa9ddd26e2£6eb1005 42,
0x3a0a36a5df68047alea2510104914c3e5ab03

58a

A ccessControl.sol

Contract: AccessControl

Inherit: Initializable, AccessControlStorage, IAccessControl
Observation: All passed including security check

Test Report: passed

Score: passed

Conclusion: passed

Function Test Type / Score
Result Return Type

DEFAULT ADMIN R v Read / public Passed
OLE
EMERGENCY_ROLE v Read / public Passed
getRoleAdmin v Read / public Passed
getRoleMember v Read / public Passed
getRoleMembersPaginat v Read / public Passed
ed
getRoleMembersCount v Read / public Passed
hasRole v Read / public Passed
PARAMETER ROLE v Read / public Passed
MINTER ROLE v Read / public Passed
PAUSER ROLE v Read / public Passed
PROXY ADMIN ROL v Read / public Passed
E
UPGRADER_ROLE v Read / public Passed
grantRole Write / public Passed

initialize v Write / public Passed
renounceRole v Write / public Passed
revokeRole v Write / public Passed
setRoleAdmin v Write / public Passed

Issues Checking Status

SWC Attack Analysis

The Smart Contract Weakness Classification Registry (SWC Registry) is an implementation of the
weakness classification scheme proposed in EIP-1470. It is loosely aligned to the terminologies
and structure used in the Common Weakness Enumeration (CWE) for more info check

https://swcreqistry.io/

Issue Checking
Description Status

136 | Unencrypted Private Data On-Chain Passed
135 | Code With No Effects Passed
134 | Message call with hardcoded gas amount Passed
133 | Hash Collisions With Multiple Variable Length Passed

Arguments
132 | Unexpected Ether balance Passed
131 | Presence of unused variables Passed
130 | Right-To-Left-Override control character (U+202E) Passed
129 | Typographical Error Passed
128 | DoS with block gas limit. Passed
127 | Arbitrary Jump with Function Type Variable Passed
126 | Insufficient Gas Griefing Passed
125 | Incorrect Inheritance Order Passed
124 Write to Arbitrary Storage Location Passed
123 | Requirement Violation Passed
122 | Lack of Proper Signature Verification Passed
121 | Missing Protection against Signature Replay Passed

Attacks
120 | Weak Sources of Randomness from Chain Passed

Attributes

Shadowing State Variables Passed
119

https://swcregistry.io/

118 | Incorrect Constructor Name Passed
117 | Signature Malleability Passed
116 | Block values as a proxy for time Passed
115 | Authorization through tx.origin Passed
114 | Transaction Order Dependence Passed
113 | DoS with Failed Call Passed
112 | Delegatecall to Untrusted Callee Passed
111 | Use of Deprecated Solidity Functions Passed
110 | Assert Violation Passed
109 | Uninitialized Storage Pointer Passed
108 | State Variable Default Visibility Passed
107 | Reentrancy Passed
106 | Unprotected SELFDESTRUCT Instruction Passed
105 | Unprotected Ether Withdrawal Passed
104 | Unchecked Call Return Value Passed
103 | Floating Pragma Not Passed
102 | Outdated Compiler Version Passed
101 | Integer Overflow and Underflow Passed
100 | Function Default Visibility Passed

Severity Definitions

Risk Description
Level
Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to tokens loss etc.

High High-level vulnerabilities are difficult to exploit;
however, they also have significant impact on smart
contract execution,

e.g. public access to crucial functions
Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low Low-level vulnerabilities are mostly related to
outdated, unused etc. code snippets, that can’t have
significant impact on execution

Note Lowest-level vulnerabilities, code style violations and
info statements can’t affect smart contract execution
and can be ignored.

Audit Findings

Critical:

No Critical severity vulnerabilities were found.

No High severity vulnerabilities were found.

No Medium severity vulnerabilities were found.

Low:

#hasRole Reverts on Zero Address Account

Description: The hasRole function reverts with AC AccountInvalid() if account == address (0). While
this is a valid check, typically a hasrole function returns false for a zero address or a non-existent account,
rather than reverting. Reverting here might break off-chain tools or integrations expecting a boolean return
for any input.

Recommendation : Change hasRole to return false for address(0) instead of reverting. This aligns with
common patterns for has functions, If AC_Accountlnvalid() is intended for other account checks in
grantRole and revokeRole for general invalidity, it's fine there.

Status: Acknowledged.

Very Low:
No Very Low severity vulnerabilities were found.

#Pragam version not fixed

Description

It is a good practice to lock the solidity version for a live deployment (use 0.8.28 instead of *0.8.28).
contracts should be deployed with the same compiler version and flags that they have been tested the most
with. Locking the pragma helps ensure that contracts do not accidentally get deployed using, for example,
the latest compiler which may have higher risks of undiscovered bugs. Contracts may also be deployed by
others and the pragma indicates the compiler version intended by the original authors. And avoid Solidity
compiler Bugs check here

https://sepolia.etherscan.io/solcbuginfo

Remediation
Remove the * sign to lock the pragma version.

https://sepolia.etherscan.io/solcbuginfo

Automatic Testing

1- SOLIDITY STATIC ANALYSIS

SOLIDITY STATICANALYSIS e SOLIDITY STATIC ANALYSIS 2
v Select all ¥ Autorun m
v ERC
v Security
; v Select ERC
v Select Security
¥ Transaction origin: ¥ ERC20:
"tx.origin' used 'decimals’ should be 'uint8'
¥ Check-effects-interaction:
Potential reentrancy bugs
¥ Inline assembly: 7
Inline assembly used * Miscellaneous
v

Block timestamp:
Can be influenced by miners

Low level calls:

Select Miscellaneous

7 -
Should only be used by Const.anthIew/Pure
experienced devs functions:

v Block hash: Potentially constant/view/pure
Can be influenced by miners functions

¥ Selfdeatruct: v Similar variable names:
Contracts using destructed iabl AL
contract can be broken Variable names are too similar

¥ No return:
Function with 'returns' not

v Gas & Economy returning

v Select Gas & Economy ¥ Guard conditions:

v Gas costs: Ensure appropriate use of
Too high gas requirement of requirefassert
functions v Result not used:

- i s 2
Inlsoniocaloalis: : : The result of an operation not
Invocation of local functions via
‘this' used

¥ Delete dynamic array: ¥ String length:

Use requirefassert 1o ensure Bytes length != String length
complete deletion v Del f d 2

¥ For loop over dynamic array: : elete from ynam“_: array:
Iterations depend on dynamic delete' leaves a gap in array
array's size ¥ Data truncated:

v

Ether transfer in loop:
Transferring Ether in a
forfwhilef/do-while loop

2- Inheritance graph

Initializable

AccessControl

AccessControlStorage

Division on intfuint values
truncates the result

IAccessControl

3- Call graph

Internal Ca
External Ca!
Defined Contra
Undefined Contra

IAccessControl (iface)

getRoleAdmin

grantRole

revokeRole

AccessControl

getRoleAdmin
setRoleAdmin
grantRole
revokeRole
renounceRole
getRoleMember
getRoleMemberCount
getRoleMembersPaginated

Source lines

B source Y comment M single [block I mixed
PN empty I todo blockEmpty

e

Risk level
Eloverall | average
perceivedComplexity
d
6
compilerVersion size
4
compilerFeatures numlLogicContracts

inlineDocumentation interfaceRisk

Source units in scope

Source Units in Scope

Source Units Analyzed: 1
Source Units in Scope: 1 (100%)

Type File Logic Contracts Interfaces Lines nLines nSLOC CommentLines Complex. Score Capabilities
4 contracts/access/AccessControl.sol 1 251 251 144 70 151
2 Totals 1 251 251 144 70 151

Legend: [~]

« Lines: total lines of the source unit

« nLines: normalized lines of the source unit (e.g. normalizes functions spanning multiple lines)

+ nSLOC: normalized source lines of code (only source-code lines; no comments, no blank lines)
« Comment Lines: lines containing single or block comments

« Complexity Score: a custom complexity score derived from code statements that are known to introduce code complexity (branches, loops, calls, external interfaces, ...)

Capabilities
Components

2Contracts € Libraries Knterfaces @ Abstract

1 0 0 0

Exposed Functions

This section lists functions that are explicitly declared public or payable. Please note that getter methods for public stateVars are not included.
{iPublic = &Payable

10 0

External Internal Private Pure View

10 12 0 0 5

StateVariables
Total &Public
7 7

Capabilities

Solidity Versions observed =~ Experimental Features & Can Receive Funds M Uses Assembly =~ @ Has Destroyable Contracts

0.8.28

= Transfers ETH Low-Level Calls = 2t DelegateCall Uses Hash Functions “ ECRecover = © New/Create/Create2

yes

Unified Modeling Language (UML)

© AccessControl

Initializable
AccessControlStorage
IAccessControl

o bytes32 DEFAULT ADMIN ROLE

bytes32 UPGRADER ROLE
bytes32 PROXY ADMIN ROLE
bytes32 EMERGENCY ROLE
bytes32 PAUSER ROLE
bytes32 PARAMETER ROLE
bytes32 MINTER ROLE

000000

e _ constructor_ ()

o initialize()

o [JhasRole()

o [JgetRoleAdmin()

e grantRole()

o revokeRole()

o renounceRole()

o setRoleAdmin()

o [JgetRoleMember()

o [JgetRoleMemberCount()
o [JgetRoleMembersPaginated()
< _grantRole()

< _revokeRole()

/| © _setRoleAdmin()

()mmmuame

©AccessControlStorage

@ |AccessControl

Functions signature

getRoleMembersPaginated (bytes32,uint256,uint256)

Functio
initial
hasRole
getRole
grantRo

revokeRole |

renounc
setRole
getRole
getRole
getRole

n Name | Sighash
ize | c4d66de8 |
| 91d14854 |
Admin | 248a9ca3
le | 2f2ff154d |
d547741f |
8bb9chbf
1e4e0091

eRole |
Admin |
Member |
MemberCount |
MembersPaginated

9010d07¢c
calbc873 |

| Function Signature

initialize (address)
hasRole (bytes32,address)

| getRoleAdmin (bytes32)

grantRole (bytes32, address)

revokeRole (bytes32, address)
| renounceRole (bytes32)

| setRoleAdmin (bytes32,bytes32)

| getRoleMember (bytes32,uint256)

| 5d0e82bc

getRoleMemberCount (bytes32)

Automatic general report

Files Description Table

| File Name | SHA-1 Hash |

| /Users/macbook/Desktop/drt-pREWA/contracts/access/AccessControl.sol |
40163fa249f10365c03cflfa9ddd26e2f6ebl1005 |

| /Users/macbook/Desktop/drt-
PREWA/contracts/access/storage/AccessControlStorage.sol |
2alf4c3d6956a89011b090a62b15254b1d720d65 |

| /Users/macbook/Desktop/drt-
PREWA/contracts/access/interfaces/IAccessControl.sol |
540ecbd4eaadelc05a650af086ebf959654ec6322 |

| /Users/macbook/Desktop/drt-pREWA/contracts/libraries/Errors.sol |
0974f6f49e3b655fa93a2792154f1b506ec03c74 |

Contracts Description Table

| Contract | Type | Bases |
| |

St I e e i s L 3| ST TS 4 | 8 Sttt
3 RS H

| L | **Function Name** | **Visibility** | **Mutability**
| **Modifiers** |

LT

| **AccessControl** | Implementation | Initializable,
AccessControlStorage, IAccessControl |||

| L | <constructor> | Public | | @ |nof |

| L | initialize | External u | © | initializer |

| L | nasRole | External [| INOJ |

| L | getRoleAdmin | External u | INOH |

| L | grantRole | External ﬂ | © INOH |

| L | revokeRole | External ﬂ | © INOU |

| L | renounceRole | External ﬂ | © |NOH |

| L | setRoleAdmin | External H | © INOH |

| L | getRoleMember | External U | INOH |

| L | getRoleMemberCount | External H | |NOH |

| L | getRoleMembersPaginated | External ﬂ | INOH |

| L | grantRole | Internal @ | © |

| L | _revokeRole | Internal e | © [

| L | setRoleAdmin | Internal e | © ||

LT

| **AccessControlStorage** | Implementation | [1]
NN

| **IAccessControl** | Interface | []]

| L | hasRole | External ﬂ | INOU |

L | getRoleAdmin | External u | |NOH |

L grantRole | External ﬂ | © INOH |

L | revokeRole | External u | © INOH |

L | renounceRole | External ﬂ | © |NOH |

L | getRoleMember | External ﬂ | INOH |

L | getRoleMemberCount | External u | INOH

L getRoleMembersPaginated | External ﬂ |
Legend

Symbol | Meaning |

© | Function can modify state |
D) | Function is payable |

|| Nof |

Conclusion

The contracts are written systematically. Team found no critical issues. So, it is
good to go for production.

Since possible test cases can be unlimited and developer level documentation (code
flow diagram with function level description) not provided, for such an extensive smart
contract protocol, we provide no such guarantee of future outcomes. We have used
all the latest static tools and manual observations to cover maximum possible test
cases to scan Everything.

Security state of the reviewed contract is “Well Secured”.

v Novolatile code.
v No high severity issues were found.

Disclaimer

This is a limited report on our findings based on our analysis, in accordance with good industry
practice as of the date of this report, in relation to cybersecurity vulnerabilities and issues in the
framework and algorithms based on smart contracts, the details of which are set out in this report.
In order to get a full view of our analysis, it is crucial for you to read the full report. While we have
done our best in conducting our analysis and producing this report, it is important to note that you
should not rely on this report and cannot claim against the team on the basis of what it says or
doesn’t say, or how team produced it, and it is important for you to conduct your own independent
investigations before making any decisions. team go into more detail on this in the below
disclaimer below — please make sure to read it in full.

By reading this report or any part of it, you agree to the terms of this disclaimer. If you
do not agree to the terms, then please immediately cease reading this report, and
delete and destroy any and all copies of this report downloaded and/or printed by you.
This report is provided for information purposes only and on a non-reliance basis, and
does not constitute investment advice. No one shall have any right to rely on the report
or its contents, and Saferico and its affiliates (including holding companies,
shareholders, subsidiaries, employees, directors, officers and other representatives)
(Saferico s) owe no duty of care towards you or any other person, nor does Saferico
make any warranty or representation to any person on the accuracy or completeness of
the report. The report is provided "as is", without any conditions, warranties or other
terms of any kind except as set out in this disclaimer, and Saferico hereby excludes all
representations, warranties, conditions and other terms (including, without limitation, the
warranties implied by law of satisfactory quality, fitness for purpose and the use of
reasonable care and skill) which, but for this clause, might have effect in relation to the
report. Except and only to the extent that it is prohibited by law, Saferico hereby
excludes all liability and responsibility, and neither you nor any other person shall have
any claim against Saferico, for any amount or kind of loss or damage that may result to
you or any other person (including without limitation, any direct, indirect, special,
punitive, consequential or pure economic loss or damages, or any loss of income,
profits, goodwill, data, contracts, use of money, or business interruption, and whether in
delict, tort (including without limitation negligence), contract, breach of statutory duty,
misrepresentation (whether innocent or negligent) or otherwise under any claim of any
nature whatsoever in any jurisdiction) in any way arising from or connected with this
report and the use, inability to use or the results of use of this report, and any reliance
on this report. The analysis of the security is purely based on the smart contracts alone.
No applications or operations were reviewed for security. No product code has been
reviewed.

	Table of Contents
	Background
	Project Information
	Executive Summary

	File and Function Level Report
	File in Scope:

	Issues Checking Status
	Audit Findings
	Critical:
	High:
	Medium:
	Low:

	Status: Acknowledged.
	Very Low:
	Notes:

	#Pragam version not fixed
	Description
	It is a good practice to lock the solidity version for a live deployment (use 0.8.28 instead of ^0.8.28). contracts should be deployed with the same compiler version and flags that they have been tested the most with. Locking the pragma helps ensure ...
	https://sepolia.etherscan.io/solcbuginfo
	Remediation
	Remove the ^ sign to lock the pragma version.
	Automatic Testing
	Functions signature
	Automatic general report
	Conclusion
	Disclaimer

