Smart Contract
Security Audit
Vi

Contract Registry Smart Contract Audit

Jun 25, 2025

https://saferico.com/

business@saferico.com
https://t.me/SFI_ANN

https://saferico.com/
mailto:business@saferico.com
https://t.me/SFI_admin

Table of Contents

Table of Contents
Background

Project Information
Smart Contract Information

Executive Summary

File and Function Level Report
File in Scope:

Issues Checking Status
SWC Attack Analysis
Severity Definitions
Audit Findings

Automatic testing
Testing proves
Inheritance graph
Call graph

Source lines

Risk level

Source units in scope

Capabilities

Unified Modeling Language (UML)

Functions signature
Automatic general report

Conclusion

Disclaimer

Background

The purpose of the audit was to achieve the following:

e Ensure that the smart contract functions as intended.
e Identify potential security issues with the smart contract.

The information in this report should be used to understand the risk exposure of the smart
contract, and as a guide to improve the security posture of the smart contract by remediating
the issues that were identified.

Project Information

e Platform: Binance Smart Chain
e Name: ContractRegistry
e Language : Solidity

o Contract Address: 0x63ad484d8el15a3d8e52ed1¢5959269239a092cea,
0x0a0f29bbbe12c9db615d1¢968c4c9ce71737clea

e Code Source: https://github.com/TerraDharitri/drt-pREW A/tree/main/contracts

https://github.com/TerraDharitri/drt-pREWA/tree/main/contracts

ContractRegistry:
Oh-Chain Contract Management

AUDIT BY

aterico

A secure, upgradeable registry for managing
and discovering contract addresses in a blockchain ecosystem.

Author: Rewa
Lisense: MIT
Solidish yersion: 0:8.28

Depehdoncies: Openzeppetin, initralizable.
conblie asegrabole;
Reomancy Our Olipgradable
Custom Accesss entrol.
Errors Library

Core Data Structure
Efficient storage for
contract lookupss and enumocertion.

— registeriss
Plus contractNane to Contrctinfo

- unused
Role-Based Acoess (Stcahi

Non-recntrant
Efficient Lookups

—> constracacing Contracfnct

Core Functionality

Key operations for managing contracts
restricted to PARANETER.

Adds a new
contract

B register
Adds a new contract

2 update
Updates address and ver

Updates
address

nevoversion
Remover

Removes contract using Swap and.
swap and pop pap

set Active Teggles active
Toggles active status status

What is ContractRegistry?

A stores metadate for each registerred
contract.

@)

7o 7 Contract

Contract
Address

montractinfo ContractInfio)

Event Finissionality

Key operations for managor contracts
restricted to PARANETER

D register
Adds a new contract

> contractsri

S update
Updates address and ver

consitcfina

allContractNames
Arrzy of all contract
names

2 [[ContractNames

& .contractNamesByType
More name for in
allContractiviNames for
G(1) name wall

contract

Security and Access Control

How it Works [O =

© Admin with PARAKEEER, KOLE call ‘
regislerContract '
(Asstalshs(04123, 10) ‘

Deploy your contracts with an
OpenZeppelin's secure ad upgraut

framework

Executive Summary

According to our assessment, the customer's solidity smart contract is Well-Secured.

Poor Secured

Automated checks are with remix IDE. All issues were performed by the team, which included the
analysis of code functionality, manual audit found during automated analysis were manually
reviewed and applicable vulnerabilities are presented in the audit overview section. The general
overview is presented in the Project Information section and all issues found are located in the
audit overview section.

Team found O critical, 0 high, 0 medium, 1 low, 0 very low-level issues and 2 notes in all solidity files of the
contract

The files:

ContractRegistry.sol

Audit Score:

99% secure

File and Function Level Report

File in Scope:

Contract Name Contract Address

ContractRegistry.sol
1c0811ecff0147d5502 | cea,

0x0a0f29bbbe12c¢9db615d1c968c4c9ce71737cl
ea

e Contract: ContractRegistry

e Inherit: nitializable, OwnableUpgradeable, ReentrancyGuardUpgradeable

e Observation: All passed including security check

e Test Report: passed

e Score: passed

e Conclusion: passed

Function Test Type / Score
Result Return Type
accessControl v Read / public Passed
contractExists v Read / public Passed
getContractAddress v Read / public Passed
getContractCount v Read / public Passed
getContractInfo v Read / public Passed
getContractName v Read / public Passed
getContractByType v Read / public Passed
listContracts v Read / public Passed
owner v Read / public Passed
registerContract v Write / public Passed
renounceOwnership v Write / public Passed
transferOwnership v Write / public Passed
removeContract v Write / public Passed
initialize v Write / public Passed

setContractActive

Write / public

Passed

updateContract

Write / public

Passed

Issues Checking Status

SWC Attack Analysis

The Smart Contract Weakness Classification Registry (SWC Registry) is an implementation of the
weakness classification scheme proposed in EIP-1470. It is loosely aligned to the terminologies
and structure used in the Common Weakness Enumeration (CWE) for more info check

https://swcreqistry.io/

Issue Checking
Description Status

136 | Unencrypted Private Data On-Chain Passed
135 | Code With No Effects Passed
134 | Message call with hardcoded gas amount Passed
133 | Hash Collisions With Multiple Variable Length Passed

Arguments
132 | Unexpected Ether balance Passed
131 | Presence of unused variables Passed
130 | Right-To-Left-Override control character (U+202E) Passed
129 | Typographical Error Passed
128 | DoS with block gas limit. Passed
127 | Arbitrary Jump with Function Type Variable Passed
126 | Insufficient Gas Griefing Passed
125 | Incorrect Inheritance Order Passed
124 Write to Arbitrary Storage Location Passed
123 | Requirement Violation Passed
122 | Lack of Proper Signature Verification Passed
121 | Missing Protection against Signature Replay Passed

Attacks
120 | Weak Sources of Randomness from Chain Passed

Attributes

Shadowing State Variables Passed
119

https://swcregistry.io/

118 | Incorrect Constructor Name Passed
117 | Signature Malleability Passed
116 | Block values as a proxy for time Not Passed
115 | Authorization through tx.origin Passed
114 | Transaction Order Dependence Passed
113 | DoS with Failed Call Passed
112 | Delegatecall to Untrusted Callee Passed
111 | Use of Deprecated Solidity Functions Passed
110 | Assert Violation Passed
109 | Uninitialized Storage Pointer Passed
108 | State Variable Default Visibility Passed
107 | Reentrancy Passed
106 | Unprotected SELFDESTRUCT Instruction Passed
105 | Unprotected Ether Withdrawal Passed
104 | Unchecked Call Return Value Passed
103 | Floating Pragma Not Passed
102 | Outdated Compiler Version Passed
101 | Integer Overflow and Underflow Passed
100 | Function Default Visibility Passed

Severity Definitions

Risk Description
Level
Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to tokens loss etc.

High High-level vulnerabilities are difficult to exploit;
however, they also have significant impact on smart
contract execution,

e.g. public access to crucial functions
Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low Low-level vulnerabilities are mostly related to
outdated, unused etc. code snippets, that can’t have
significant impact on execution

Note Lowest-level vulnerabilities, code style violations and
info statements can’t affect smart contract execution
and can be ignored.

Audit Findings

Critical:

No Critical severity vulnerabilities were found.

No High severity vulnerabilities were found.

No Medium severity vulnerabilities were found.

Low:

#Unnecessary ReentrancyGuardUpgradeable

Description
The contractRegistry contract imports and initializes ReentrancyGuardUpgradeable, and its external
write functions use the nonReentrant modifier. However, this contract primarily manages data (mapping
names to addresses) and does not handle external token transfers or BNB, which are the primary concerns for
reentrancy attacks.
Recommendation
Unless there are future plans for this registry to directly participate in value transfers (which is generally out
of scope for a registry), ReentrancyGuardUpgradeable can likely be removed. This would reduce the

contract's bytecode size and slightly decrease deployment and transaction gas costs. It doesn't add any
security benefit in its current form.

Status: Acknowledged.

Very Low:

No Very Low severity vulnerabilities were found.

#Pragam version not fixed

Description

It is a good practice to lock the solidity version for a live deployment (use 0.8.28 instead of "0.8.28).

contracts should be deployed with the same compiler version and flags that they have been tested the most
with. Locking the pragma helps ensure that contracts do not accidentally get deployed using, for example,
the latest compiler which may have higher risks of undiscovered bugs. Contracts may also be deployed by

others and the pragma indicates the compiler version intended by the original authors. And avoid Solidity
compiler Bugs check here

https://sepolia.etherscan.io/solcbuginfo

Remediation
Remove the ” sign to lock the pragma version.

Use of block.timestamp for comparisons

The value of block.timestamp can be manipulated by the miner. And conditions with
strict equality is difficult to achieve - block.timestamp.

contractsByName [name] = ContractInfo ({
contractAddress: contractAddress ,
contractType: contractType ,
version: version ,
active: true,
registrationTime: block.timestamp,
registrar: msg.sender

Recommendation

Avoid use of block.timestamp.

https://sepolia.etherscan.io/solcbuginfo

Automatic Testing

1-

SOLIDITY STATIC ANALYSIS

v Select all ¥ Autorun

v Security

v Select Security

¥ Transaction origin:
tx.origin' used
¥ Check-effects-interaction:
Potential reentrancy bugs
¥ Inline assembly:
Inline assembly used
v Block timestamp:
Can be influenced by miners
¥ Low level calls:
Should only be used by
experienced devs
v Block hash:
Can be influenced by miners
v Selfdestruct:
Contracts using destructed
contract can be broken

> Gas & Economy

¥ Select Gas & Economy

v Gas costs:
Too high gas requirement of
functions

¥ This on local calls:
Invocation of local functions via
‘this*

¥ Delete dynamic array:
Use requirefassert to ensure
complete deletion

¥ For loop over dynamic array:
Iterations depend on dynamic
array's size

v Ether transfer in loop:
Transferring Ether in a
forfwhilef/do-while loop

2- Inheritance graph

ContractRegistry

OwnableUpgradeable

Y
ReentrancyGuardUpgradeable

SOLIDITY STATIC ANALYSIS

SOLIDITY STATIC ANALYSIS

v ERC

v Select ERC

v

4

ERC20:
'decimals’ should be 'uint8'

Miscellaneous

¥ Select Miscellaneous

v

Initializable

Constant/View/Pure
functions:

Potentially constant/view/pure
functions

Similar variable names:
Variable names are too similar
No return:

Function with 'returns' not
returning

Guard conditions:

Ensure appropriate use of
requirefassert

Result not used:

The result of an operation not
used

String length:

Bytes length != String length
Delete from dynamic array:
‘delete' leaves a gap in array
Data truncated:

Division on intfuint values
truncates the result

AccessControl

AccessControlStorage

IAccessControl

3- Call graph

IAccessControl (iface)

hasRole
getRoleAdmin
grantRole

revokeRole

getRoleMember
getRoleMemberCount

getRoleMembersPaginated

"O%Mo

ContractRegistry

_disablelnitializers
_transferOwnership

ZeroAddress

registerContract

updateContract

removeContract
setContractActive

getContractinfo

getContractAddress

getContractName

CR_NameEmpty

getContractsByType CR_ContractNotFound

onlyParameterRole CR_LimitisZero

L < constructor=
>
D eoisiercontract 2
| updarecontract
| emoveconiract 2
L sercontraciactive 2
<=
| oercontractaddress 2
| oetcontraciname 4
L isccontracts 2
| oecontractsayType 2
__oniyparameterrole__

CR_AccessControlZero

getContractCount NotAuthorized

i

PARAMETER_ROLE ZeroAddress
TE2»
hasRole
i

Source lines

B source | comment [single | block I mixed
I empty [todo [blockEmpty

&

Risk level

[l overall [average

perceivedComplexity
T
6
compilerVersion size
compilerFeatures numLogicContracts

inlineDocumentation interfaceRisk

Source units in scope

Source Units in Scope

Source Units Analyzed: 1
Source Units in Scope: 1 (100%)

Type File Logic Contracts Interfaces Lines nLines nSLOC CommentLines Complex.Score Capabilities
Z contracts/core/ContractRegistry.sol 1 449 413 220 144 219
*] Totals 1 449 413 220 144 219
Legend: [—]

« Lines: total lines of the source unit
« nLines: normalized lines of the source unit (e.g. normalizes functions spanning multiple lines)
+ nSLOC: normalized source lines of code (only source-code lines; no comments, no blank lines)

« Comment Lines: lines containing single or block comments

« Complexity Score: a custom complexity score derived from code statements that are known to introduce code complexity (branches, loops, calls, external interfaces, ...)

Capabilities
Components
~Contracts = ELibraries = (nterfaces = ®Abstract

1 0 0 0

Exposed Functions

This section lists functions that are explicitly declared public or payable. Please note that getter methods for public stateVars are not included.

{?Public = @&Payable

12 0

External Internal Private Pure View
12 6 0 0 7
StateVariables
Total = #Public
7 1
Capabilities
Solidity Versions observed # Experimental Features & Can Receive Funds ™ Uses Assembly = @ Has Destroyable Contracts

0.8.28

<= Transfers ETH Low-Level Calls 22 DelegateCall Uses Hash Functions “ ECRecover © New/Create/Create2

yes

Unified Modeling Language (UML)

@ ContractRegistry

Initializable
OwnableUpgradeable
ReentrancyGuardUpgradeable

o AccessControl accessControl

o string==>Contractinfo _contractsByName

o address==string _namesByAddress

o string _allContractNames

o string=>uint256 _contractNamelndices

o bytes32=>null _contractNamesByTypeHash

o bytes32=>mapping string=>uint256 _contractTypelndicesByName

e _ constructor_ ()

o initialize()

o registerContract()

o updateContract()

e removeContract()

o setContractActive()

o [JgetContractAddress()
e [JgetContractName()

o [JgetContractinfo()

e [listContracts()

o [JgetContractsByType()
o [JcontractExists()

o [JgetContractCount()

7
/
i
S
/!
/
/!
!

@ Initializable @C)wnableUpgradeable

@ReentrancyGuardU pgradeable

Functions signature

| Function Name | Sighash

| initialize | 485cc955 |

| registerContract |

| Function Signature |

initialize (address, address) |
83debad7 |

registerContract (string, address, string, string) |

updateContract |
removeContract |
setContractActive |
getContractAddress |
getContractName |
getContractInfo |

listContracts | 8e820bb57

getContractsByType |

d09%eadd’
97623b58
7929d9%ad
04433bbc |
£299%9ad44
819f34b3

updateContract (string, address, string)
removeContract (string) |

| setContractActive(string,bool) |
getContractAddress (string) |
getContractName (address) |
getContractInfo(string) |

listContracts (uint256,uint256) |
58743c71 |

getContractsByType (string,uint256,uint256) |

| contractExists |
| getContractCount |

Oa7f2fff
9399869d

contractExists (string) |
getContractCount () |

Automatic general report

Files Description Table

| File Name | SHA-1 Hash |

| /Users/macbook/Desktop/drt-pREWA/contracts/core/ContractRegistry.sol |

6557£2c40d50caa85b0321c0811lecff0147d5502 |

| /Users/macbook/Desktop/drt-pREWA/contracts/access/AccessControl.sol |

40163fa249f10365c03cfl1fa9ddd26e2f6ebl005 |
| /Users/macbook/Desktop/drt-

PREWA/contracts/access/storage/AccessControlStorage.sol |

2al1f4c3d6956a89011b09%0a62b15254b1d720d65 |
| /Users/macbook/Desktop/drt-

PREWA/contracts/access/interfaces/IAccessControl.sol |

540ecb4eaadelc05a650af086ebf959654ec6322 |

| /Users/macbook/Desktop/drt-pREWA/contracts/libraries/Errors.sol |

0974£6£49e3b655£a93a2792154£1b506ec03c74 |
Contracts Description Table

| Contract |

A e e e |

| L | **Function Name** |
| **Modifiers** |
NN

| **ContractRegistry** | Implementation |
OwnableUpgradeable,

| L | <constructor> | Public | | @ |noJ
| L | initialize | External ﬂ | © |
| L | registerContract | External ﬂ |
nonReentrant |

| L | updateContract | External ﬂ | © |
|
| L | removeContract | External ﬂ | © |
|
|

L | setContractActive | External u | ©
nonReentrant |

Visibility |

ReentrancyGuardUpgradeable

Mutability

Initializable,

initializer |

| onlyParameterRole
onlyParameterRole nonReentrant
onlyParameterRole nonReentrant

| onlyParameterRole

| L | getContractAddress | External U | INOH |
| L | getContractName | External u | |NOH |

| L | getContractInfo | External H | INOE |

| L | listContracts | External U | INOH |

| L getContractsByType | External H | |NOH |
| L | contractExists | External H | INOﬂ |

| L | getContractCount | External ﬂ | INOH |

AccessControl | Implementation | Initializable,
ccessControlStorage, IAccessControl |||
L | <constructor> | Public | | @ |nNof |

|

|
A

|

| L | initialize | External ﬂ | @ | initializer |
| L | nasRole | External [| INOJ |

| L | getRoleAdmin | External u | INOH |

| L | grantRole | External ﬂ | © INOH |

| L | revokeRole | External ﬂ | © INOU |

| L | renounceRole | External ﬂ | © |NOH |

| L | setRoleAdmin | External H | © INOH |

| L | getRoleMember | External U | INOH |

| L | getRoleMemberCount | External H | |NOH |

| L | getRoleMembersPaginated | External ﬂ | INOH |
| L | grantRole | Internal @ | © |

| L | revokeRole | Internal e | © [

| L | :setRoleAdmin | Internal e | © ||
NN

| **AccessControlStorage** | Implementation | [1]
LT

| **IAccessControl** | Interface | []

| L | hasRole | External u | INOU |

| L | getRoleAdmin | External u | |NOH |

| L | grantRole | External ﬂ | © INOH |

| L | revokeRole | External u | © INOH |

| L | renounceRole | External ﬂ | © |NOH |

| L | getRoleMember | External U | INOH |

| L | getRoleMemberCount | External ﬂ | |NOH |

| L getRoleMembersPaginated | External ﬂ | |NOH |

Legend

| Symbol | Meaning |

| i===———== S et |

| © | Function can modify state |

| 641 | Function is payable |

Conclusion

The contracts are written systematically. Team found no critical issues. So, it is
good to go for production.

Since possible test cases can be unlimited and developer level documentation (code
flow diagram with function level description) not provided, for such an extensive smart
contract protocol, we provide no such guarantee of future outcomes. We have used
all the latest static tools and manual observations to cover maximum possible test
cases to scan Everything.

Security state of the reviewed contract is “Well Secured”.

v No volatile code.
v No high severity issues were found.

Disclaimer

This is a limited report on our findings based on our analysis, in accordance with good industry
practice as of the date of this report, in relation to cybersecurity vulnerabilities and issues in the
framework and algorithms based on smart contracts, the details of which are set out in this report.
In order to get a full view of our analysis, it is crucial for you to read the full report. While we have
done our best in conducting our analysis and producing this report, it is important to note that you
should not rely on this report and cannot claim against the team on the basis of what it says or
doesn’t say, or how team produced it, and it is important for you to conduct your own independent
investigations before making any decisions. team go into more detail on this in the below
disclaimer below — please make sure to read it in full.

By reading this report or any part of it, you agree to the terms of this disclaimer. If you
do not agree to the terms, then please immediately cease reading this report, and
delete and destroy any and all copies of this report downloaded and/or printed by you.
This report is provided for information purposes only and on a non-reliance basis, and
does not constitute investment advice. No one shall have any right to rely on the report
or its contents, and Saferico and its affiliates (including holding companies,
shareholders, subsidiaries, employees, directors, officers and other representatives)
(Saferico s) owe no duty of care towards you or any other person, nor does Saferico
make any warranty or representation to any person on the accuracy or completeness of
the report. The report is provided "as is", without any conditions, warranties or other
terms of any kind except as set out in this disclaimer, and Saferico hereby excludes all
representations, warranties, conditions and other terms (including, without limitation, the
warranties implied by law of satisfactory quality, fitness for purpose and the use of
reasonable care and skill) which, but for this clause, might have effect in relation to the
report. Except and only to the extent that it is prohibited by law, Saferico hereby
excludes all liability and responsibility, and neither you nor any other person shall have
any claim against Saferico, for any amount or kind of loss or damage that may result to
you or any other person (including without limitation, any direct, indirect, special,
punitive, consequential or pure economic loss or damages, or any loss of income,
profits, goodwill, data, contracts, use of money, or business interruption, and whether in
delict, tort (including without limitation negligence), contract, breach of statutory duty,
misrepresentation (whether innocent or negligent) or otherwise under any claim of any
nature whatsoever in any jurisdiction) in any way arising from or connected with this
report and the use, inability to use or the results of use of this report, and any reliance
on this report. The analysis of the security is purely based on the smart contracts alone.
No applications or operations were reviewed for security. No product code has been
reviewed.

	Table of Contents
	Background
	Project Information
	Executive Summary

	File and Function Level Report
	File in Scope:

	Issues Checking Status
	Audit Findings
	Critical:
	High:
	Medium:
	Low:

	Unless there are future plans for this registry to directly participate in value transfers (which is generally out of scope for a registry), ReentrancyGuardUpgradeable can likely be removed. This would reduce the contract's bytecode size and slightly ...
	Status: Acknowledged.
	Very Low:
	Notes:

	#Pragam version not fixed
	Description
	It is a good practice to lock the solidity version for a live deployment (use 0.8.28 instead of ^0.8.28). contracts should be deployed with the same compiler version and flags that they have been tested the most with. Locking the pragma helps ensure ...
	https://sepolia.etherscan.io/solcbuginfo
	Remediation
	Remove the ^ sign to lock the pragma version.
	Automatic Testing

	Functions signature
	| Function Name | Sighash | Function Signature |
	| ------------- | ---------- | ------------------ |
	| initialize | 485cc955 | initialize(address,address) |
	| registerContract | 83deba97 | registerContract(string,address,string,string) |
	| updateContract | d09ea4d7 | updateContract(string,address,string) |
	| removeContract | 97623b58 | removeContract(string) |
	| setContractActive | 7929d9ad | setContractActive(string,bool) |
	| getContractAddress | 04433bbc | getContractAddress(string) |
	| getContractName | f299ad44 | getContractName(address) |
	| getContractInfo | 819f34b3 | getContractInfo(string) |
	| listContracts | 8e820b57 | listContracts(uint256,uint256) |
	| getContractsByType | 58743c71 | getContractsByType(string,uint256,uint256) |
	| contractExists | 0a7f2fff | contractExists(string) |
	| getContractCount | 9399869d | getContractCount() |
	Automatic general report
	Conclusion
	Disclaimer

