
Smart Contract

Security Audit

V1

 Transparent Proxy Smart Contract Audit

Jun 29, 2025

https://saferico.com/

business@saferico.com

https://t.me/SFI_ANN

https://saferico.com/
mailto:business@saferico.com
https://t.me/SFI_admin

Table of Contents

Table of Contents

Background

Project Information

Smart Contract Information

Executive Summary

File and Function Level Report

File in Scope:

Issues Checking Status

SWC Attack Analysis

Severity Definitions

Audit Findings

Automatic testing

 Testing proves

 Inheritance graph

 Call graph

Source lines

Risk level

Source units in scope

Capabilities

Unified Modeling Language (UML)

Functions signature

Automatic general report

Conclusion

Disclaimer

Background

The purpose of the audit was to achieve the following:

● Ensure that the smart contract functions as intended.

● Identify potential security issues with the smart contract.

The information in this report should be used to understand the risk exposure of the smart

contract, and as a guide to improve the security posture of the smart contract by remediating

the issues that were identified.

Project Information

● Platform: Binance Smart Chain

● Name: TransparentProxy

● Language : Solidity

● Contract Address: Not deploy yet

● Code Source: https://github.com/TerraDharitri/drt-pREWA/tree/main/contracts

https://github.com/TerraDharitri/drt-pREWA/tree/main/contracts

Executive Summary

According to our assessment, the customer`s solidity smart contract is Well-Secured.

Well Secured

✔

Secured

Poor Secured

Insecure

Automated checks are with remix IDE. All issues were performed by the team, which included the

analysis of code functionality, manual audit found during automated analysis were manually

reviewed and applicable vulnerabilities are presented in the audit overview section. The general

overview is presented in the Project Information section and all issues found are located in the

audit overview section.

Team found 0 critical, 0 high, 0 medium, 0 low, 0 very low-level issues and 2 notes in all solidity files of the

contract

The files:

TransparentProxy.sol

Audit Score:

100% secure

File and Function Level Report

File in Scope:

Contract Name SHA

256

hash

Contract Address

TransparentProxy.sol 2bdb08cc2b1a856e46be4

6fa3edbcc91c24c0842

● Contract: TransparentProxy

● Inherit: TransparentUpgradeableProxy, IProxy

● Observation: All passed including security check

● Test Report: passed

● Score: passed

● Conclusion: passed

Function Test

Result

Type /

Return Type

Score

admin ✔ Read / public Passed

getImplementationSlot ✔ Read / public Passed

getAdminSlot ✔ Read / public Passed

implementation ✔ Read / public Passed

upgradeToAndCall ✔ Write /

payable

Passed

upgradeTo ✔ Write / public Passed

changeAdmin ✔ Write / public Passed

Issues Checking Status

SWC Attack Analysis

The Smart Contract Weakness Classification Registry (SWC Registry) is an implementation of the
weakness classification scheme proposed in EIP-1470. It is loosely aligned to the terminologies
and structure used in the Common Weakness Enumeration (CWE) for more info check
https://swcregistry.io/

No. Issue

Description

Checking

Status

136 Unencrypted Private Data On-Chain Passed

135 Code With No Effects Passed

134 Message call with hardcoded gas amount Passed

133 Hash Collisions With Multiple Variable Length
Arguments

Passed

132 Unexpected Ether balance Passed

131 Presence of unused variables Passed

130 Right-To-Left-Override control character (U+202E) Passed

129 Typographical Error Passed

128 DoS with block gas limit. Passed

127 Arbitrary Jump with Function Type Variable Passed

126 Insufficient Gas Griefing Passed

125 Incorrect Inheritance Order Passed

124
Write to Arbitrary Storage Location

Passed

123 Requirement Violation Passed

122 Lack of Proper Signature Verification Passed

121 Missing Protection against Signature Replay
Attacks

Passed

120 Weak Sources of Randomness from Chain
Attributes

Passed

119

Shadowing State Variables Passed

https://swcregistry.io/

118 Incorrect Constructor Name Passed

117 Signature Malleability Passed

116 Block values as a proxy for time Passed

115 Authorization through tx.origin Passed

114 Transaction Order Dependence Passed

113 DoS with Failed Call Passed

112 Delegatecall to Untrusted Callee Passed

111 Use of Deprecated Solidity Functions Passed

110 Assert Violation Passed

109 Uninitialized Storage Pointer Passed

108 State Variable Default Visibility Passed

107 Reentrancy Passed

106 Unprotected SELFDESTRUCT Instruction Passed

105 Unprotected Ether Withdrawal Passed

104 Unchecked Call Return Value Passed

103 Floating Pragma Not Passed

102 Outdated Compiler Version Passed

101 Integer Overflow and Underflow Passed

100 Function Default Visibility Passed

Severity Definitions

Risk

Level

Description

Critical Critical vulnerabilities are usually straightforward to

exploit and can lead to tokens loss etc.

High High-level vulnerabilities are difficult to exploit;

however, they also have significant impact on smart

contract execution,

e.g. public access to crucial functions

Medium Medium-level vulnerabilities are important to fix;

however, they can’t lead to tokens lose

Low Low-level vulnerabilities are mostly related to

outdated, unused etc. code snippets, that can’t have

significant impact on execution

Note Lowest-level vulnerabilities, code style violations and

info statements can’t affect smart contract execution

and can be ignored.

Audit Findings

Critical:

No Critical severity vulnerabilities were found.

High:

No High severity vulnerabilities were found.

Medium:

No Medium severity vulnerabilities were found.

Low:

No Low severity vulnerabilities were found.

Very Low:

No Very Low severity vulnerabilities were found.

Notes:

#No Access Logging

Description

Admin view functions like implementation() or admin() could be logged for auditing.

Recommendation

Consider emitting logs or access metrics depending on your monitoring requirements.

P.S: useful in large systems.

#Pragam version not fixed

Description

It is a good practice to lock the solidity version for a live deployment (use 0.8.28 instead of ^0.8.28).

contracts should be deployed with the same compiler version and flags that they have been tested the most

with. Locking the pragma helps ensure that contracts do not accidentally get deployed using, for example,

the latest compiler which may have higher risks of undiscovered bugs. Contracts may also be deployed by

others and the pragma indicates the compiler version intended by the original authors. And avoid Solidity

compiler Bugs check here

https://sepolia.etherscan.io/solcbuginfo

Remediation

Remove the ^ sign to lock the pragma version.

https://sepolia.etherscan.io/solcbuginfo

Automatic Testing

1- SOLIDITY STATIC ANALYSIS

2- Inheritance graph

3- Call graph

Source lines

Risk level

Source units in scope

Capabilities

Unified Modeling Language (UML)

Functions signature

| Function Name | Sighash | Function Signature |

| ------------- | ---------- | ------------------ |

| implementation | 5c60da1b | implementation() |

| admin | f851a440 | admin() |

| changeAdmin | 8f283970 | changeAdmin(address) |

| upgradeTo | 3659cfe6 | upgradeTo(address) |

| upgradeToAndCall | 4f1ef286 | upgradeToAndCall(address,bytes) |

| getAdminSlot | 9ad5c59a | getAdminSlot() |

| getImplementationSlot | 7a34c821 | getImplementationSlot() |

Automatic general report

 Files Description Table

| File Name | SHA-1 Hash |

|-------------|--------------|

| /Users/macbook/Desktop/drt-pREWA/contracts/proxy/TransparentProxy.sol |

2bdb08cc2b1a856e46be46fa3edbcc91c24c0842 |

| /Users/macbook/Desktop/drt-pREWA/contracts/proxy/interfaces/IProxy.sol

| 36b989d4dcc83011c7a0d54ae2e8abfd07fa001e |

 Contracts Description Table

| Contract | Type | Bases |

| |

|:----------:|:-------------------:|:----------------:|:----------------

:|:---------------:|

| └ | **Function Name** | **Visibility** | **Mutability**

| **Modifiers** |

||||||

| **TransparentProxy** | Implementation | TransparentUpgradeableProxy,

IProxy |||

| └ | <Constructor> | Public ❗️ | 🛑 | TransparentUpgradeableProxy |

└	implementation	External ❗️		onlyAdmin
└	admin	External ❗️		onlyAdmin
└	changeAdmin	External ❗️	🛑	onlyAdmin

| └ | upgradeTo | External ❗️ | 🛑 | onlyAdmin |

| └ | upgradeToAndCall | External ❗️ | 💵 | onlyAdmin |

└	getAdminSlot	External ❗️		NO❗️
└	getImplementationSlot	External ❗️		NO❗️

| **IProxy** | Interface | |||

└	implementation	External ❗️		NO❗️
└	admin	External ❗️		NO❗️
└	changeAdmin	External ❗️	🛑	NO❗️
└	upgradeTo	External ❗️	🛑	NO❗️
└	upgradeToAndCall	External ❗️	💵	NO❗️

 Legend

| Symbol | Meaning |

|:--------:|-----------|

| 🛑 | Function can modify state |

| 💵 | Function is payable |

Conclusion

The contracts are written systematically. Team found no critical issues. So, it is

good to go for production.

Since possible test cases can be unlimited and developer level documentation (code

flow diagram with function level description) not provided, for such an extensive smart

contract protocol, we provide no such guarantee of future outcomes. We have used

all the latest static tools and manual observations to cover maximum possible test

cases to scan Everything.

Security state of the reviewed contract is “Well Secured”.

✔ No volatile code.

✔ No high severity issues were found.

Disclaimer

This is a limited report on our findings based on our analysis, in accordance with good industry
practice as of the date of this report, in relation to cybersecurity vulnerabilities and issues in the
framework and algorithms based on smart contracts, the details of which are set out in this report.
In order to get a full view of our analysis, it is crucial for you to read the full report. While we have
done our best in conducting our analysis and producing this report, it is important to note that you
should not rely on this report and cannot claim against the team on the basis of what it says or
doesn’t say, or how team produced it, and it is important for you to conduct your own independent
investigations before making any decisions. team go into more detail on this in the below
disclaimer below – please make sure to read it in full.

By reading this report or any part of it, you agree to the terms of this disclaimer. If you

do not agree to the terms, then please immediately cease reading this report, and

delete and destroy any and all copies of this report downloaded and/or printed by you.

This report is provided for information purposes only and on a non-reliance basis, and

does not constitute investment advice. No one shall have any right to rely on the report

or its contents, and Saferico and its affiliates (including holding companies,

shareholders, subsidiaries, employees, directors, officers and other representatives)

(Saferico s) owe no duty of care towards you or any other person, nor does Saferico

make any warranty or representation to any person on the accuracy or completeness of

the report. The report is provided "as is", without any conditions, warranties or other

terms of any kind except as set out in this disclaimer, and Saferico hereby excludes all

representations, warranties, conditions and other terms (including, without limitation, the

warranties implied by law of satisfactory quality, fitness for purpose and the use of

reasonable care and skill) which, but for this clause, might have effect in relation to the

report. Except and only to the extent that it is prohibited by law, Saferico hereby

excludes all liability and responsibility, and neither you nor any other person shall have

any claim against Saferico, for any amount or kind of loss or damage that may result to

you or any other person (including without limitation, any direct, indirect, special,

punitive, consequential or pure economic loss or damages, or any loss of income,

profits, goodwill, data, contracts, use of money, or business interruption, and whether in

delict, tort (including without limitation negligence), contract, breach of statutory duty,

misrepresentation (whether innocent or negligent) or otherwise under any claim of any

nature whatsoever in any jurisdiction) in any way arising from or connected with this

report and the use, inability to use or the results of use of this report, and any reliance

on this report. The analysis of the security is purely based on the smart contracts alone.

No applications or operations were reviewed for security. No product code has been

reviewed.

	Table of Contents
	Background
	Project Information
	Executive Summary

	File and Function Level Report
	File in Scope:

	Issues Checking Status
	Audit Findings
	Critical:
	High:
	Medium:
	Low:
	Very Low:
	Notes:

	Description
	Admin view functions like implementation() or admin() could be logged for auditing.
	Recommendation
	Consider emitting logs or access metrics depending on your monitoring requirements.
	P.S: useful in large systems.
	#Pragam version not fixed
	Description
	It is a good practice to lock the solidity version for a live deployment (use 0.8.28 instead of ^0.8.28). contracts should be deployed with the same compiler version and flags that they have been tested the most with. Locking the pragma helps ensure ...
	https://sepolia.etherscan.io/solcbuginfo
	Remediation
	Remove the ^ sign to lock the pragma version.
	Automatic Testing
	Functions signature
	| Function Name | Sighash | Function Signature |
	| ------------- | ---------- | ------------------ |
	| implementation | 5c60da1b | implementation() |
	| admin | f851a440 | admin() |
	| changeAdmin | 8f283970 | changeAdmin(address) |
	| upgradeTo | 3659cfe6 | upgradeTo(address) |
	| upgradeToAndCall | 4f1ef286 | upgradeToAndCall(address,bytes) |
	| getAdminSlot | 9ad5c59a | getAdminSlot() |
	| getImplementationSlot | 7a34c821 | getImplementationSlot() |
	Automatic general report
	Conclusion
	Disclaimer

